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1 Introduction

The SPIDAL (Scalable Parallel Interoperable Data Analytics Library) project was begun
in Fall 2014 and has reached a technical completion in Fall 2020 with outreach activities
continuing in 2021. The February Poster summarizes the 2020 status and activity very
well [1] with previous work through September 2018 summarized in a book chapter [2]
with extensive references. This builds on our 21-month report [3] which has much
material not repeated in the later reports and paper. Institutions and key people involved
were Arizona State (Beckstein), Indiana (Fox, Qiu, von Laszewski), Kansas (Paden),
Rutgers (Jha), Stony Brook (Wang), Virginia (Marathe, Vullikanti), and Utah
(Cheatham).

2 Summary of Accomplishments

2.1 Architecture

The project was built around community-driven High Performance Big Data biophysical
applications based on HPC, distributed systems, network science, GIS, and
machine/deep learning. It involved cyberinfrastructure, algorithms, and applications with
seven participating organizations. We were inspired by the beneficial impact that
scientific libraries such as PETSc, MPI, and ScaLAPACK have had for supercomputer
simulations and hope that our building blocks MIDAS and SPIDAL will have a similar
impact on data analytics. The project has an overall architecture built around the twin
concepts of HPC-ABDS (High-Performance Computing Enhanced Apache Big Data
Stack) software [4] and classification of Big data applications — the Ogres — that defined
the key qualities exhibited by applications and required to be supported in software.
These underpinning ideas are described in section 2 of the 21-month report [3] and
briefly summarized in our 2018 paper [2], which includes a sophisticated discussion of
Big Data — Big Simulation and HPC-Cloud convergence [5]. The original big data Ogres
work was a collaboration between Indiana University and the NIST Public Big Data
Working Group [6] that collected 54 use cases — each with 26 properties. The Ogres
were a set of 50 features that categorized applications and allowed one to identify
common classes such as Global GML and Local LML Machine Learning. GML is highly
suitable for HPC systems while the very common LML and MapReduce categories also
perform well on more commodity systems. As another example, “Streaming” was a
feature seen in 80% of the NIST applications [7], [8].

2.2 Cyberinfrastructure

Our approach to data-intensive applications relies on Apache Big Data stack ABDS for
the core software building blocks where we added an interface layer MIDAS - the
Middleware for Data-Intensive Analytics and Science, that will enable scalable
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applications with the performance of HPC (High-Performance Computing) and the rich
functionality of the commodity ABDS (Apache Big Data Stack). Here we developed
major HPC enhancements to the ABDS software including Harp based on Hadoop and
Cylon/Twister2 based on Heron, Spark, and Flink for both batch and streaming
scenarios. Pilot jobs from Rutgers were very successful in resource management and
scheduling for high throughput parallel computing on NSF and DoE systems. We
contributed with new techniques to get high performance across C++, Java and Python
coded systems. MIDAS will allow our libraries to be scalable and interoperable across a
range of computing systems including clouds, clusters, and supercomputers. We also
recognized two important broad categories HPCforML (ClforAl) or MLforHPC (AlforCl),
where our early contributions were in HPCforML but recently we also contributed in the
second area [9].

2.3 Community Applications and Algorithms

Another major project product was a cross-cutting high-performance data-analysis
library — SPIDAL (Scalable Parallel Interoperable Data Analytics Library) [10]. The
library has 4 components: a) a core library covering well-established functionality such
as optimization and clustering; b) parallel graph and network algorithms; c) analysis of
biomolecular simulations (high-performance versions of existing libraries from Utah and
Arizona State) and d) image processing in both Polar Science and Pathology.

Community application highlights The project has also led to significant algorithmic
advances in machine learning methods for networks, including motif detection, anomaly
detection, explainability of clustering, deep learning for epidemic forecasting (TDEFSI in
MLforHPC category), and the foundations of dynamical systems on networks. We
supported the mitigation of the Coronavirus outbreak with the simulation of different
spreading scenarios and possible interventions. For Polar Science, we developed
operational ML/DL to locate ice sheet boundaries and snow layers from radar data. In
Public Health GIS, we researched and implemented spatial big data query for opioid
epidemic prevention and intervention while for pathology, we developed DL based
image analysis tools for image segmentation, 3D registration, reconstruction, and
spatial analysis. For the major Biomolecular Simulation community, SPIDAL developed
PMDA which parallelizes the widely used MDAnalysis Python package for MD
(Molecular Dynamics) trajectory analysis. In this area, recent MLforHPC research by us
has shown surrogates that improve molecular dynamics simulation performance by very
large factors for both short times (using recurrent neural nets) and long time scales (with
fully connected networks). We gave a roadmap for other applications [9], [11].
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3 Details of SPIDAL Middleware Research

3.1 MIDAS Pilot Jobs HPC Task Management.

The Rutgers/RADICAL team in collaboration with Fox began the SPIDAL project
investigating resource management abstractions and software systems defining the two
‘ecosystems” and seeking to bridge two hitherto distinct paradigms. We investigated the
Pilot concept, first as a way of bridging, then as a way of unifying resource management
across HPC and data-intensive systems. Even as we made progress in managing the
software divergence and complexity, both platforms started to shift: during the course of
SPIDAL, HPC platforms became significantly more heterogeneous in their architecture,
where simple multicore nodes were replaced by complex GPU-CPU and manycore
architectures, including some transitory architectures (e.g., KNL family). On the other
hand, the data-intensive platforms morphed from high-memory and localized
compute-data affinity systems (e.g., TACC’ Wrangler) to platforms geared towards deep
learning.

3.2 Harp Big Data HPC Convergence Middleware

Harp is an HPC-ABDS (High Performance Computing Enhanced Apache Big Data
Stack) framework [12] from Qiu that aims to support distributed machine learning and
other data-intensive applications. To improve the expressiveness and performance in
big data processing, the Harp library is introduced, which provides data abstractions
and related communication abstractions and transforms map-reduce programming
models into map-collective models. The word “harp” symbolizes the effort to make
parallel processes cooperate together through collective communication for efficient
data processing, just as strings in a harp can make a concordant sound. Harp can
integrate with Hadoop and supports data abstraction types such as arrays, key-values,
and graphs with related collective communication operations on top of each type.
Several applications are developed based on the Harp framework, including K-means
clustering, multidimensional scaling, and PageRank. Being based on Hadoop, Harp has
better sustainability and fault-tolerance properties than Twister or Twister4Azure that
inspired it.

3.3 Cylon and Twister2 Big Data Processing Systems

Cylon [13] and Twister2 [14] are two open-source data analytics projects developed at
Indiana University Digital Science centers enabling the processing of large data sets
and integrating Al tools with data engineering. Twister2 is a dataflow engine for
processing large data sets. It is a flexible, high-performance data processing engine that
is part of the MIDAS software environment. The project is open-source and available
under the Apache License Version 2.0. Recently Twister2 became compatible with
Apache Beam API. Apache Beam is a project originated from Google for large scale
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data processing which has roots to original map-reduce papers. Twister2 is one of few
other engines such as Apache Spark, Apache Flink, and Samza that has the same
capability to work with Apache Beam.

Cylon addresses the need to integrate Python (Jupyter) notebooks and data
engineering with data analytics including tools such as Pytorch and Tensorflow. Cylon
has a fast and scalable distributed kernel for analyzing structured data and integrates
with Python natively to provide access to the rich python ecosystem with high
performance. The Cylon project was started in January 2020 and now is in its second
release. It has the core distributed operations implemented in C++ and Python APIs are
provided for these. Cylon had three papers this year that illustrate its role in data
engineering and the Python APIs of Cylon for High-performance computing.

4 SPIDAL CommunityApplication Research

4.1 Biomolecular Simulations BMS

In the biomolecular simulation field covered by Arizona State and Utah, analysis (in the
sense of the original SPIDAL big data ideas) remains important. But a clear growth area
compared to the start of the SPIDAL project is the extraction of descriptors for ML
approaches, both offline and online/streaming. Being able to use HPC resources
efficiently for these related tasks remains an important area.

Many users in BMS are not expert programmers so two key takeaways were:

1) Easily accessible programming languages are important, even if that does not always
result in the highest performance out of the box. In data science and most of the
physical sciences, this means overwhelmingly Python.

2) Documentation and tutorials are more important than originally anticipated in order
for the new software to gain any traction. Initiatives such as Google Season of Docs
https://developers.google.com/season-of-docs/ recognized this as a problem for the
wider open source community. Academic projects also have a hard time to budget
enough time and resources for this crucial task and also don’t necessarily have the
expertise to generate appropriate documentation efficiently.

4.2 Polar Science

SPIDAL in a Kansas-Indiana collaboration focused on machine learning research on
radioglaciology, where only a couple of ML publications existed at the start of the award.
Machine learning research is now ongoing in nearly all aspects of radioglaciology
(signal processing to image analysis to ice models) and SPIDAL developed algorithms
are readily available to the radioglaciology community in an open-source
community-built software toolbox hosted on GitHub. Recent work is [15]
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4.3 Epidemiology and Network Science

The UVA team in collaboration with Qiu, made several contributions to network
science, graph dynamical systems, and public health, both from a theoretical and
applied perspective. Our work in network science included developing highly scalable
network generators and subgraph detection methods. A number of random graph
models have been proposed in network science. However, they don’t scale easily,
making it difficult to do detailed analyses with such random graph models. We
developed some of the most scalable methods for several models and developed a
general framework that can handle multiple models. For subgraph detection, we
developed the first parallelization of fixed-parameter tractable algorithms, which scale
very well, but also give rigorous guarantees, unlike prior methods. We adapted these
methods for problems of scan statistics, which are a very commonly used approach for
anomaly detection. Our methods were the first to scale to large networked data while
providing rigorous guarantees at the same time. In the area of graph dynamical systems
(GDS), we developed the foundations of the learnability of GDS by obtaining tight lower
and upper bounds on the sample complexity. We also show that our methods work well
on both synthetic and real-world networks. Finally, we developed novel deep learning
methods for epidemic forecasting [16], which use a theory-guided approach, and
provide more robust performance in practice.

4.4 Biomedical Research

Biomedical research is increasingly driven by computer science due to the explosion of
data, in particular multidimensional data, including spatial,spatial-temporal and imaging
data, in both 2D and 3D. The Stony Brook team has made major contributions on
spatial big data systems, computational digital pathology, and spatial big data driven
opioid epidemic research.

1. We have developed scalable and efficient spatial big data management and
querying systems for both 2D and 3D data, which achieves high scalability and
efficiency through on-demand querying engines, novel indexing methods,
progressive compression, progressive queries, and in-memory processing [17].

2. We have developed a suite of scalable pathology image processing libraries on
registration of serial sections, and segmentation of nuclei, blood vessels, and
liver steatosis, with deep learning oriented segmentation methods [18].

3. We applied the spatial computing methods to opioid epidemic research, which
leads to major public health findings.

5 Education / Outreach and Training

Summer REU programs were emphasized throughout the program with a total of about
5 each year. Arizona State found REUs were successful in bringing domain scientists
into the data analytics arena. With some statistics out of 5 REU students: 1 continued
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for a Ph.D. in the area at ASU, 2 continued undergrad projects in the research group at
ASU, 1 took up a position at a national lab. IU’s REU program was very successful with
a focus on students from Tribal Colleges and HBCU’s. In summer 2020 we perhaps had
our most successful experience with as fully virtual REU with 4 students from Tribal
Colleges. Another highlight was Stony Brook which involved multiple REU students
conducting summer research, and two research manuscripts were produced through
the REU work.

SPIDAL research gave rise to many new collaborations with new DoE links developed
at Rutgers and Indiana. Work on big data benchmarking led to major links with MLPerf
(an active organization with over 80 mainly industry members) and internationally with
the SciML group at the UK’s Rutherford Laboratory.

SPIDAL research was included in many courses developed by partners as exemplified
by HPC-Cyberinfrastructure/Machine courses at IU [19].

6 Perspectives on SPIDAL Research

6.1 What worked (as well as or better than planned)

Cyberinfrastructure Convergence was an unanticipated important area at Rutgers
and |U were both made good progress reported above. Rutgers found platform changes
that reflected shifts in the application landscape. The platforms went from loosely
coupled HPC and data-analytics (e.g, MD simulations, and trajectory analysis), to tightly
coupled HPC - ML workflows [11], [20]. The RADICAL team managed these
paradigmatic transitions by focusing on the needs of SPIDAL'’s driving applications, viz.,
biomolecular simulations, and high-resolution imagery. We developed conceptual
abstractions and software systems to support diverse applications and brought them to
the production scale. In the final 6 months of the project, the team developed new
implementations to support the COVID campaign consisting of diverse but integrated
workflows.

Cyberinfrastructure Concepts and abstractions: here we made progress in many
areas including Ogres for classifying Big Data problems, Computation models in Harp,
Big data system architectures in Cylon and Twister2 and Pilot Jobs and Data from
Rutgers.

Application Lessons: At ASU, domain scientists working with CS specialists lead to
improved performance in existing code and new parallel algorithms.

At Stony Brook, our work has been successfully applied to support two main research
themes: big spatial data-driven public health research on the opioid epidemic, and
computational digital pathology. This led to an NCI award on 3D digital pathology for
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cancer research, and a working-in-progress proposal using machine learning and big
spatial data for early prediction of opioid use disorder of young adults.

At Kansas and IU, radioglaciology ML research benefited from the convergence of Al
experts in areas of computer vision and HPC tools; SPIDAL provided an effective
framework to pursue solutions in these spaces.

6.2 What didn’t work (as well as expected)

In Cyberinfrastructure, we underestimated the Software Engineering challenges as
well as documentation needs. In the latter area, we stopped using traditional websites
but focussed on GitHub based web resources covering both software and
documentation. More technically, we initially underestimated deep learning, and Python
Notebooks but these are now a major focus. Also, the complexity of diverse platforms
and the need to integrate with diverse ecosystems was not anticipated. SPIDAL
unexpectedly needed multiple and diverse languages, starting with Java, but that early
focus has been overshadowed by the growth and importance of Python

Application lessons come from Stony Brook. There is a major hurdle for biomedical
researchers to use the software tools running on a distributed/cloud-based environment.
GUI or Web-based portal is highly desired, and easy visualization and navigation of
results are preferred. This has driven us to develop a Web portal to integrate big data
computing in the backend. Further, accessing healthcare data is restricted due to
privacy constraints. We have spent a major effort on getting institutional IRB approval
and state-level approval to use electronic health records with location information. While
now we can access a large statewide dataset, accessing data from our own hospital is
still pending.

7 Challenges/Futures at the close of SPIDAL

7.1 Cyberinfrastructure MIDAS

Given system heterogeneity, both coarse and fine-grained task-level parallelism has
become more dominant for analytics. SPIDAL has had mixed / some success
leveraging task-level parallelism but just recently technology like Cylon [13] has made
major progress in HPC for Python, Our streaming interest has grown with work at
several sites including IU’s work on real-time analysis of data from care races [21]. We
have already noted our increased focus on MLforHPC.

Perhaps the greatest change will come from the still increasing importance of deep
learning and Jupyter notebooks.

7.2 Applications and Communities

Stony Brook notes that the NIH Human BioMolecular Atlas Program (HuBMAP) and the
NCI Human Tumor Atlas Network (HTAN) are initiatives to generate extreme-scale
biomedical data at the cellular or subcellular resolution to create 3D atlases of the
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human body. This creates a huge opportunity in expanding our spatial big data research
and poses new challenges as well due to the high complexity of data generated from
human tissues.

Kansas notes that the SPIDAL work led to an NSF Convergence Accelerator proposal
submission involving partnerships that formed as a consequence of SPIDAL; there is
now community awareness that ML techniques should be applied on a grander scale to
mine decades of underutilized radioglaciology data.

UVa explored different kinds of computing models for network algorithms, including
Hadoop, Spark, MPI, and HARP [22]. In general, graph algorithms are challenging to
parallelize due to their highly heterogeneous communication patterns, and the best
model depends on the problem. We found HARP and its variants worked very well for
subgraph counting problems. Further work is needed for problems such as network
scan statistics, which are more difficult optimization problems.
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