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1 Introduction  
The SPIDAL (Scalable Parallel Interoperable Data Analytics Library) project was begun 
in Fall 2014 and has reached a technical completion in Fall 2020 with outreach activities 
continuing in 2021. The February Poster summarizes the 2020 status and activity very 
well [1] with previous work through September 2018  summarized in a book chapter [2] 
with extensive references. This builds on our 21-month report [3] which has much 
material not repeated in the later reports and paper. Institutions and key people involved 
were Arizona State (Beckstein), Indiana (Fox, Qiu, von Laszewski), Kansas (Paden), 
Rutgers (Jha), Stony Brook (Wang), Virginia (Marathe, Vullikanti), and Utah 
(Cheatham). 

2 Summary of Accomplishments 

2.1 Architecture 
The project was built around community-driven High Performance Big Data biophysical 
applications based on HPC, distributed systems, network science, GIS, and 
machine/deep learning. It involved cyberinfrastructure, algorithms, and applications with 
seven participating organizations. We were inspired by the beneficial impact that 
scientific libraries such as PETSc, MPI, and ScaLAPACK have had for supercomputer 
simulations and hope that our building blocks MIDAS and SPIDAL will have a similar 
impact on data analytics. The project has an overall architecture built around the twin 
concepts of HPC-ABDS (High-Performance Computing Enhanced Apache Big Data 
Stack) software [4] and classification of Big data applications – the Ogres – that defined 
the key qualities exhibited by applications and required to be supported in software. 
These underpinning ideas are described in section 2 of the 21-month report [3] and 
briefly summarized in our 2018 paper [2], which includes a sophisticated discussion of 
Big Data – Big Simulation and HPC-Cloud convergence [5]. The original big data Ogres 
work was a collaboration between Indiana University and the NIST Public Big Data 
Working Group [6] that collected 54 use cases – each with 26 properties. The Ogres 
were a set of 50 features that categorized applications and allowed one to identify 
common classes such as Global GML and Local LML Machine Learning. GML is highly 
suitable for HPC systems while the very common LML and MapReduce categories also 
perform well on more commodity systems. As another example, “Streaming” was a 
feature seen in 80% of the NIST applications [7], [8]. 

2.2 Cyberinfrastructure 
Our approach to data-intensive applications relies on Apache Big Data stack ABDS for             
the core software building blocks where we added an interface layer MIDAS – the              
Middleware for Data-Intensive Analytics and Science, that will enable scalable          
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applications with the performance of HPC (High-Performance Computing) and the rich           
functionality of the commodity ABDS (Apache Big Data Stack). Here we developed            
major HPC enhancements to the ABDS software including Harp based on Hadoop and             
Cylon/Twister2 based on Heron, Spark, and Flink for both batch and streaming            
scenarios. Pilot jobs from Rutgers were very successful in resource management and            
scheduling for high throughput parallel computing on NSF and DoE systems. We            
contributed with new techniques to get high performance across C++, Java and Python             
coded systems. MIDAS will allow our libraries to be scalable and interoperable across a              
range of computing systems including clouds, clusters, and supercomputers. We also           
recognized two important broad categories HPCforML (CIforAI) or MLforHPC (AIforCI),          
where our early contributions were in HPCforML but recently we also contributed in the              
second area [9]. 

2.3 Community Applications and Algorithms 
Another major project product was a cross-cutting high-performance data-analysis         
library – SPIDAL (Scalable Parallel Interoperable Data Analytics Library) [10]. The           
library has 4 components: a) a core library covering well-established functionality such            
as optimization and clustering; b) parallel graph and network algorithms; c) analysis of             
biomolecular simulations (high-performance versions of existing libraries from Utah and          
Arizona State) and d) image processing in both Polar Science and Pathology.  

Community application highlights The project has also led to significant algorithmic           
advances in machine learning methods for networks, including motif detection, anomaly           
detection, explainability of clustering, deep learning for epidemic forecasting (TDEFSI in           
MLforHPC category), and the foundations of dynamical systems on networks. We           
supported the mitigation of the Coronavirus outbreak with the simulation of different            
spreading scenarios and possible interventions. For Polar Science, we developed          
operational ML/DL to locate ice sheet boundaries and snow layers from radar data. In              
Public Health GIS, we researched and implemented spatial big data query for opioid             
epidemic prevention and intervention while for pathology, we developed DL based           
image analysis tools for image segmentation, 3D registration, reconstruction, and          
spatial analysis. For the major Biomolecular Simulation community, SPIDAL developed          
PMDA which parallelizes the widely used MDAnalysis Python package for MD           
(Molecular Dynamics) trajectory analysis. In this area, recent MLforHPC research by us            
has shown surrogates that improve molecular dynamics simulation performance by very           
large factors for both short times (using recurrent neural nets) and long time scales (with               
fully connected networks). We gave a roadmap for other applications [9], [11]. 
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3 Details of SPIDAL Middleware Research 
3.1 MIDAS Pilot Jobs HPC Task Management.  
The Rutgers/RADICAL team in collaboration with Fox began the SPIDAL project 
investigating resource management abstractions and software systems defining the two 
“ecosystems” and seeking to bridge two hitherto distinct paradigms. We investigated the 
Pilot concept, first as a way of bridging, then as a way of unifying resource management 
across HPC and data-intensive systems. Even as we made progress in managing the 
software divergence and complexity, both platforms started to shift: during the course of 
SPIDAL, HPC platforms became significantly more heterogeneous in their architecture, 
where simple multicore nodes were replaced by complex GPU-CPU and manycore 
architectures, including some transitory architectures (e.g., KNL family). On the other 
hand, the data-intensive platforms morphed from high-memory and localized 
compute-data affinity systems (e.g., TACC’ Wrangler) to platforms geared towards deep 
learning.  

3.2 Harp Big Data HPC Convergence Middleware 
Harp is an HPC-ABDS (High Performance Computing Enhanced Apache Big Data 
Stack) framework [12] from Qiu that aims to support distributed machine learning and 
other data-intensive applications. To improve the expressiveness and performance in 
big data processing, the Harp library is introduced, which provides data abstractions 
and related communication abstractions and transforms map-reduce programming 
models into map-collective models. The word “harp” symbolizes the effort to make 
parallel processes cooperate together through collective communication for efficient 
data processing, just as strings in a harp can make a concordant sound. Harp can 
integrate with Hadoop and supports data abstraction types such as arrays, key-values, 
and graphs with related collective communication operations on top of each type. 
Several applications are developed based on the Harp framework, including K-means 
clustering, multidimensional scaling, and PageRank. Being based on Hadoop, Harp has 
better sustainability and fault-tolerance properties than Twister or Twister4Azure that 
inspired it. 

3.3 Cylon and Twister2 Big Data Processing Systems 
Cylon [13] and Twister2 [14] are two open-source data analytics projects developed at 
Indiana University Digital Science centers enabling the processing of large data sets 
and integrating AI tools with data engineering. Twister2 is a dataflow engine for 
processing large data sets. It is a flexible, high-performance data processing engine that 
is part of the MIDAS software environment. The project is open-source and available 
under the Apache License Version 2.0. Recently Twister2 became compatible with 
Apache Beam API. Apache Beam is a project originated from Google for large scale 
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data processing which has roots to original map-reduce papers. Twister2 is one of few 
other engines such as Apache Spark, Apache Flink, and Samza that has the same 
capability to work with Apache Beam. 
Cylon addresses the need to integrate Python (Jupyter) notebooks and data 
engineering with data analytics including tools such as Pytorch and Tensorflow. Cylon 
has a fast and scalable distributed kernel for analyzing structured data and integrates 
with Python natively to provide access to the rich python ecosystem with high 
performance. The Cylon project was started in January 2020 and now is in its second 
release. It has the core distributed operations implemented in C++ and Python APIs are 
provided for these. Cylon had three papers this year that illustrate its role in data 
engineering and the Python APIs of Cylon for High-performance computing.  

4 SPIDAL CommunityApplication Research 
4.1 Biomolecular Simulations BMS 
In the biomolecular simulation field covered by Arizona State and Utah, analysis (in the 
sense of the original SPIDAL big data ideas) remains important. But a clear growth area 
compared to the start of the SPIDAL project is the extraction of descriptors for ML 
approaches, both offline and online/streaming. Being able to use HPC resources 
efficiently for these related tasks remains an important area.  
Many users in BMS are not expert programmers so two key takeaways were: 
1) Easily accessible programming languages are important, even if that does not always 
result in the highest performance out of the box. In data science and most of the 
physical sciences, this means overwhelmingly Python. 
2) Documentation and tutorials are more important than originally anticipated in order 
for the new software to gain any traction. Initiatives such as Google Season of Docs 
https://developers.google.com/season-of-docs/ recognized this as a problem for the 
wider open source community. Academic projects also have a hard time to budget 
enough time and resources for this crucial task and also don’t necessarily have the 
expertise to generate appropriate documentation efficiently. 

4.2 Polar Science 
SPIDAL in a Kansas-Indiana collaboration focused on machine learning research on 
radioglaciology, where only a couple of ML publications existed at the start of the award. 
Machine learning research is now ongoing in nearly all aspects of radioglaciology 
(signal processing to image analysis to ice models) and SPIDAL developed algorithms 
are readily available to the radioglaciology community in an open-source 
community-built software toolbox hosted on GitHub.  Recent work is [15] 
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4.3 Epidemiology and Network Science 
 The UVA team in collaboration with Qiu, made several contributions to network 
science, graph dynamical systems, and public health, both from a theoretical and 
applied perspective. Our work in network science included developing highly scalable 
network generators and subgraph detection methods. A number of random graph 
models have been proposed in network science. However, they don’t scale easily, 
making it difficult to do detailed analyses with such random graph models. We 
developed some of the most scalable methods for several models and developed a 
general framework that can handle multiple models. For subgraph detection, we 
developed the first parallelization of fixed-parameter tractable algorithms, which scale 
very well, but also give rigorous guarantees, unlike prior methods. We adapted these 
methods for problems of scan statistics, which are a very commonly used approach for 
anomaly detection. Our methods were the first to scale to large networked data while 
providing rigorous guarantees at the same time. In the area of graph dynamical systems 
(GDS), we developed the foundations of the learnability of GDS by obtaining tight lower 
and upper bounds on the sample complexity. We also show that our methods work well 
on both synthetic and real-world networks. Finally, we developed novel deep learning 
methods for epidemic forecasting [16], which use a theory-guided approach, and 
provide more robust performance in practice. 

4.4 Biomedical Research 
 Biomedical research is increasingly driven by computer science due to the explosion of 
data, in particular multidimensional data, including spatial,spatial-temporal and imaging 
data, in both 2D and 3D. The Stony Brook team has made major contributions on 
spatial big data systems, computational digital pathology,  and spatial big data driven 
opioid epidemic research.  

1. We have developed scalable and efficient spatial big data management and 
querying systems for both 2D and 3D data, which achieves high scalability and 
efficiency through on-demand querying engines, novel indexing methods, 
progressive compression,  progressive queries, and in-memory processing [17].  

2. We have developed a suite of scalable pathology image processing libraries on 
registration of serial sections, and segmentation of nuclei, blood vessels, and 
liver steatosis, with deep learning oriented segmentation methods [18].  

3. We applied the spatial computing methods to opioid epidemic research, which 
leads to major public health findings. 

5 Education / Outreach and Training  
Summer REU programs were emphasized throughout the program with a total of about 
5 each year. Arizona State found REUs were successful in bringing domain scientists 
into the data analytics arena. With some statistics out of 5 REU students: 1 continued 
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for a Ph.D. in the area at ASU, 2 continued undergrad projects in the research group at 
ASU, 1 took up a position at a national lab. IU’s REU program was very successful with 
a focus on students from Tribal Colleges and HBCU’s. In summer 2020 we perhaps had 
our most successful experience with as fully virtual REU with 4 students from Tribal 
Colleges. Another highlight was Stony Brook which involved multiple REU students 
conducting summer research, and two research manuscripts were produced through 
the REU work.  
 
SPIDAL research gave rise to many new collaborations with new DoE links developed 
at Rutgers and Indiana.  Work on big data benchmarking led to major links with MLPerf 
(an active organization with over 80 mainly industry members) and internationally with 
the SciML group at the UK’s Rutherford Laboratory. 
 
SPIDAL research was included in many courses developed by partners as exemplified 
by HPC-Cyberinfrastructure/Machine courses at IU [19]. 
 

6 Perspectives on SPIDAL Research 
6.1 What worked (as well as or better than planned) 
Cyberinfrastructure Convergence was an unanticipated important area at Rutgers 
and IU were both made good progress reported above. Rutgers found platform changes 
that reflected shifts in the application landscape. The platforms went from loosely 
coupled HPC and data-analytics (e.g, MD simulations, and trajectory analysis), to tightly 
coupled HPC - ML workflows [11], [20]. The RADICAL team managed these 
paradigmatic transitions by focusing on the needs of SPIDAL’s driving applications, viz., 
biomolecular simulations, and high-resolution imagery. We developed conceptual 
abstractions and software systems to support diverse applications and brought them to 
the production scale. In the final 6 months of the project, the team developed new 
implementations to support the COVID campaign consisting of diverse but integrated 
workflows. 
Cyberinfrastructure Concepts and abstractions: here we made progress in many 
areas including Ogres for classifying Big Data problems, Computation models in Harp, 
Big data system architectures in Cylon and Twister2 and Pilot Jobs and Data from 
Rutgers. 
Application Lessons: At ASU, domain scientists working with CS specialists lead to 
improved performance in existing code and new parallel algorithms. 
At Stony Brook, our work has been successfully applied to support two main research 
themes: big spatial data-driven public health research on the opioid epidemic, and 
computational digital pathology. This led to an NCI award on 3D digital pathology for 

https://paperpile.com/c/uvoIl7/snnO
https://paperpile.com/c/uvoIl7/FP5b+fKw0


cancer research, and a working-in-progress proposal using machine learning and big 
spatial data for early prediction of opioid use disorder of young adults.  
At Kansas and IU, radioglaciology ML research benefited from the convergence of AI 
experts in areas of computer vision and HPC tools; SPIDAL provided an effective 
framework to pursue solutions in these spaces. 

6.2 What didn’t work (as well as expected) 
In Cyberinfrastructure, we underestimated the Software Engineering challenges as 
well as documentation needs. In the latter area, we stopped using traditional websites 
but focussed on GitHub based web resources covering both software and 
documentation. More technically, we initially underestimated deep learning, and Python 
Notebooks but these are now a major focus. Also, the complexity of diverse platforms 
and the need to integrate with diverse ecosystems was not anticipated. SPIDAL 
unexpectedly needed multiple and diverse languages, starting with Java, but that early 
focus has been overshadowed by the growth and importance of Python  
Application lessons come from Stony Brook. There is a major hurdle for biomedical 
researchers to use the software tools running on a distributed/cloud-based environment. 
GUI or Web-based portal is highly desired, and easy visualization and navigation of 
results are preferred. This has driven us to develop a Web portal to integrate big data 
computing in the backend. Further, accessing healthcare data is restricted due to 
privacy constraints. We have spent a major effort on getting institutional IRB approval 
and state-level approval to use electronic health records with location information. While 
now we can access a large statewide dataset, accessing data from our own hospital is 
still pending.  

7 Challenges/Futures at the close of SPIDAL 
7.1 Cyberinfrastructure MIDAS 
Given system heterogeneity, both coarse and fine-grained task-level parallelism has 
become more dominant for analytics. SPIDAL has had mixed / some success 
leveraging task-level parallelism but just recently technology like Cylon [13] has made 
major progress in HPC for Python, Our streaming interest has grown with work at 
several sites including IU’s work on real-time analysis of data from care races [21]. We 
have already noted our increased focus on MLforHPC. 
Perhaps the greatest change will come from the still increasing importance of deep 
learning and Jupyter notebooks. 

7.2 Applications and Communities 
Stony Brook notes that the NIH Human BioMolecular Atlas Program (HuBMAP) and the 
NCI Human Tumor Atlas Network (HTAN) are initiatives to generate extreme-scale 
biomedical data at the cellular or subcellular resolution to create 3D atlases of the 
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human body. This creates a huge opportunity in expanding our spatial big data research 
and poses new challenges as well due to the high complexity of data generated from 
human tissues.  
Kansas notes that the SPIDAL work led to an NSF Convergence Accelerator proposal 
submission involving partnerships that formed as a consequence of SPIDAL; there is 
now community awareness that ML techniques should be applied on a grander scale to 
mine decades of underutilized radioglaciology data. 
UVa explored different kinds of computing models for network algorithms, including 
Hadoop, Spark, MPI, and HARP [22]. In general, graph algorithms are challenging to 
parallelize due to their highly heterogeneous communication patterns, and the best 
model depends on the problem. We found HARP and its variants worked very well for 
subgraph counting problems. Further work is needed for problems such as network 
scan statistics, which are more difficult optimization problems. 

8 Selected References 

[1] Geoffrey Fox, Madhav Marathe, Shantenu Jha, Judy Qiu, Fusheng Wang, “CIF21 DIBBs: 
Middleware and High Performance Analytics Libraries for Scalable Data Science Status 
Poster, February 2020.” [Online]. Available: 
http://dsc.soic.indiana.edu/presentations/DibbsNSF1443054-CSSITemplatePoster.pptx,. 
[Accessed: 06-Oct-2020] 

[2] O. Beckstein, G. Fox, J. Qiu, D. Crandall, G. von Laszewski, J. Paden, S. Jha, F. Wang, M. 
Marathe, A. Vullikanti, and T. Cheatham, “Contributions to High-Performance Big Data 
Computing,” in Future Trends of HPC in a Disruptive Scenario, vol. 34, Grandinetti, L., 
Joubert, G.R., Michielsen, K., Mirtaheri, S.L., Taufer, M., Yokota, R., Ed. IOS, 2019 [Online]. 
Available: http://dsc.soic.indiana.edu/publications/SPIDALPaperSept2018.pdf 

[3] G. Fox, D. Crandall, J. Qiu, G. Von Laszewski, S. Jha, J. Paden, O. Beckstein, T. 
Cheatham, M. Marathe, and F. Wang, “Datanet: CIF21 DIBBs: Middleware and High 
Performance Analytics Libraries for Scalable Data Science NSF14-43054 Progress Report. 
A 21 month Project Report,” Sep. 2016 [Online]. Available: 
http://dsc.soic.indiana.edu/publications/SPIDAL-DIBBSreport_July2016.pdf 

[4] “HPC-ABDS Kaleidoscope of over 350 Apache Big Data Stack and HPC Technologies.” 
[Online]. Available: http://hpc-abds.org/kaleidoscope/. [Accessed: 01-Dec-2018] 

[5] Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburugamuve, 
“Big Data, Simulations and HPC Convergence,” in Springer Lecture Notes in Computer 
Science LNCS 10044, New Delhi, India, 2016 [Online]. Available: 
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.pdf 

[6] Wo L. Chang, Geoffrey Fox, NBD-PWG NIST Big Data Public Working Group, “NIST Big 
Data Interoperability Framework: Volume 3, Big Data Use Cases and General 
Requirements [Version 2],” NIST, Jun. 2018 [Online]. Available: 
https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-3-big-data
-use-cases-and-general 

[7] Geoffrey Fox, Shantenu Jha, and Lavanya Ramakrishnan, Streaming and Steering 
Applications: Requirements and Infrastructure STREAM2015. 2015 [Online]. Available: 
http://streamingsystems.org/stream2015.html 

https://paperpile.com/c/uvoIl7/MQ1m
http://paperpile.com/b/uvoIl7/RIEZ
http://paperpile.com/b/uvoIl7/RIEZ
http://paperpile.com/b/uvoIl7/RIEZ
http://dsc.soic.indiana.edu/presentations/DibbsNSF1443054-CSSITemplatePoster.pptx,
http://paperpile.com/b/uvoIl7/RIEZ
http://paperpile.com/b/uvoIl7/RIEZ
http://paperpile.com/b/uvoIl7/Q3s1
http://paperpile.com/b/uvoIl7/Q3s1
http://paperpile.com/b/uvoIl7/Q3s1
http://paperpile.com/b/uvoIl7/Q3s1
http://paperpile.com/b/uvoIl7/Q3s1
http://paperpile.com/b/uvoIl7/Q3s1
http://paperpile.com/b/uvoIl7/Q3s1
http://dsc.soic.indiana.edu/publications/SPIDALPaperSept2018.pdf
http://paperpile.com/b/uvoIl7/ZgJTM
http://paperpile.com/b/uvoIl7/ZgJTM
http://paperpile.com/b/uvoIl7/ZgJTM
http://paperpile.com/b/uvoIl7/ZgJTM
http://dsc.soic.indiana.edu/publications/SPIDAL-DIBBSreport_July2016.pdf
http://paperpile.com/b/uvoIl7/wOaj1
http://paperpile.com/b/uvoIl7/wOaj1
http://hpc-abds.org/kaleidoscope/
http://paperpile.com/b/uvoIl7/wOaj1
http://paperpile.com/b/uvoIl7/F7xl
http://paperpile.com/b/uvoIl7/F7xl
http://paperpile.com/b/uvoIl7/F7xl
http://paperpile.com/b/uvoIl7/F7xl
http://paperpile.com/b/uvoIl7/F7xl
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.pdf
http://paperpile.com/b/uvoIl7/8BMX5
http://paperpile.com/b/uvoIl7/8BMX5
http://paperpile.com/b/uvoIl7/8BMX5
https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-3-big-data-use-cases-and-general
https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-3-big-data-use-cases-and-general
http://paperpile.com/b/uvoIl7/V7wEm
http://paperpile.com/b/uvoIl7/V7wEm
http://paperpile.com/b/uvoIl7/V7wEm
http://paperpile.com/b/uvoIl7/V7wEm
http://streamingsystems.org/stream2015.html


[8] G. Fox, S. Jha, and L. Ramakrishnan, STREAM2016: Streaming Requirements, 
Experience, Applications and Middleware Workshop Workshop Final Report. 2016 [Online]. 
Available: http://dx.doi.org/10.2172/1344785 

[9] Geoffrey Fox, Shantenu Jha, “Learning Everywhere: A Taxonomy for the Integration of 
Machine Learning and Simulations,” in IEEE eScience 2019 Conference, San Diego, 
California [Online]. Available: https://arxiv.org/abs/1909.13340 

[10] SPIDAL Project, “HPCAnalytics Big Data Resource.” [Online]. Available: 
https://hpcanalytics.org/. [Accessed: 01-Jan-2020] 

[11] Geoffrey Fox, Shantenu Jha, “Understanding ML driven HPC: Applications and 
Infrastructure,” in IEEE eScience 2019 Conference, San Diego, California [Online]. 
Available: https://escience2019.sdsc.edu/ 

[12] “Harp-DAAL Framework.” [Online]. Available: 
https://dsc-spidal.github.io/harp/docs/harpdaal/harpdaal/. [Accessed: 24-Nov-2019] 

[13] C. Widanage, N. Perera, V. Abeykoon, S. Kamburugamuve, T. A. Kanewala, H. Maithree, 
P. Wickramasinghe, A. Uyar, G. Gunduz, and G. Fox, “High Performance Data Engineering 
Everywhere,” arXiv [cs.DC], 19-Jul-2020 [Online]. Available: http://arxiv.org/abs/2007.09589 

[14] “Twister2 Tutorial and Project Home Page.” [Online]. Available: https://twister2.org/. 
[Accessed: 09-Oct-2020] 

[15] Y. Wang, M. Xu, J. Paden, L. Koenig, G. Fox, and D. Crandall, “Deep Tiered Image 
Segmentation for detecting Internal Ice Layers in Radar Imagery,” arXiv [cs.CV], 
08-Oct-2020 [Online]. Available: http://arxiv.org/abs/2010.03712 

[16] L. Wang, J. Chen, and M. Marathe, “TDEFSI: Theory-guided Deep Learning-based 
Epidemic Forecasting with Synthetic Information,” ACM Trans. Spatial Algorithms Syst., vol. 
6, no. 3, pp. 1–39, Apr. 2020 [Online]. Available: https://doi.org/10.1145/3380971 

[17] Yanhui Liang, Hoang Vo, Jun Kong, Fusheng Wang, “iSPEED: a Scalable and Distributed 
In-Memory Based Spatial Query System for Large and Structurally Complex 3D Data. A 
Demo Paper,” in Proceedings of the 44th International Conference on Very Large Data 
Bases (VLDB 2018) Volume 11 Issue 12, Rio de Janeiro, Brazil., 2018, pp. 2078–2081 
[Online]. Available: http://www.vldb.org/pvldb/vol11/p2078-vo.pdf 

[18] M. Roy, F. Wang, H. Vo, D. Teng, G. Teodoro, A. B. Farris, E. Castillo-Leon, M. B. Vos, and 
J. Kong, “Deep-learning-based accurate hepatic steatosis quantification for histological 
assessment of liver biopsies,” Lab. Invest., vol. 100, no. 10, pp. 1367–1383, Oct. 2020 
[Online]. Available: http://dx.doi.org/10.1038/s41374-020-0463-y 

[19] Digital Science Center, “Cybertraining training resource for Cyberinfrastructure-Machine 
Learning Interface.” [Online]. Available: https://cybertraining-dsc.github.io/about/. 
[Accessed: 1 October, 2020] 

[20] H. Lee, H. Ma, M. Turilli, D. Bhowmik, S. Jha, and A. Ramanathan, “DeepDriveMD: 
Deep-Learning Driven Adaptive Molecular Simulations for Protein Folding,” in Deep 
Learning (DL) on Supercomputers workshop (In cooperation with TCHPC and held in 
conjunction with SC19), 2019 [Online]. Available: http://arxiv.org/abs/1909.07817 

[21] Bo Peng, Jiayu Li, Selahattin Akkas, Fugang Wang, Takuya Araki, Ohno Yoshiyuki, Judy 
Qiu, “Rank Position Forecasting in Car Racing,” Jul. 2020 [Online]. Available: 
http://dsc.soic.indiana.edu/publications/RankPrediction (1).pdf 

[22] L. Chen, J. Li, C. Sahinalp, M. Marathe, A. Vullikanti, A. Nikolaev, E. Smirnov, R. Israfilov, 
and J. Qiu, “Subgraph2vec: Highly-vectorized tree-like subgraph counting,” in 2019 IEEE 
International Conference on Big Data, Los Angeles [Online]. Available: 
http://dsc.soic.indiana.edu/publications/Bigdata_Subgraph2Vec.pdf 

http://paperpile.com/b/uvoIl7/Ehura
http://paperpile.com/b/uvoIl7/Ehura
http://paperpile.com/b/uvoIl7/Ehura
http://paperpile.com/b/uvoIl7/Ehura
http://paperpile.com/b/uvoIl7/Ehura
http://dx.doi.org/10.2172/1344785
http://paperpile.com/b/uvoIl7/j04F
http://paperpile.com/b/uvoIl7/j04F
http://paperpile.com/b/uvoIl7/j04F
http://paperpile.com/b/uvoIl7/j04F
http://paperpile.com/b/uvoIl7/j04F
https://arxiv.org/abs/1909.13340
http://paperpile.com/b/uvoIl7/744M
https://hpcanalytics.org/
http://paperpile.com/b/uvoIl7/744M
http://paperpile.com/b/uvoIl7/FP5b
http://paperpile.com/b/uvoIl7/FP5b
http://paperpile.com/b/uvoIl7/FP5b
http://paperpile.com/b/uvoIl7/FP5b
http://paperpile.com/b/uvoIl7/FP5b
https://escience2019.sdsc.edu/
http://paperpile.com/b/uvoIl7/iHQG
https://dsc-spidal.github.io/harp/docs/harpdaal/harpdaal/
http://paperpile.com/b/uvoIl7/iHQG
http://paperpile.com/b/uvoIl7/oVvZ
http://paperpile.com/b/uvoIl7/oVvZ
http://paperpile.com/b/uvoIl7/oVvZ
http://paperpile.com/b/uvoIl7/oVvZ
http://paperpile.com/b/uvoIl7/oVvZ
http://arxiv.org/abs/2007.09589
http://paperpile.com/b/uvoIl7/MLzl
https://twister2.org/
http://paperpile.com/b/uvoIl7/MLzl
http://paperpile.com/b/uvoIl7/MLzl
http://paperpile.com/b/uvoIl7/eABZ
http://paperpile.com/b/uvoIl7/eABZ
http://paperpile.com/b/uvoIl7/eABZ
http://paperpile.com/b/uvoIl7/eABZ
http://paperpile.com/b/uvoIl7/eABZ
http://arxiv.org/abs/2010.03712
http://paperpile.com/b/uvoIl7/tBl6
http://paperpile.com/b/uvoIl7/tBl6
http://paperpile.com/b/uvoIl7/tBl6
http://paperpile.com/b/uvoIl7/tBl6
http://paperpile.com/b/uvoIl7/tBl6
https://doi.org/10.1145/3380971
http://paperpile.com/b/uvoIl7/Pfua
http://paperpile.com/b/uvoIl7/Pfua
http://paperpile.com/b/uvoIl7/Pfua
http://paperpile.com/b/uvoIl7/Pfua
http://paperpile.com/b/uvoIl7/Pfua
http://paperpile.com/b/uvoIl7/Pfua
http://paperpile.com/b/uvoIl7/Pfua
http://www.vldb.org/pvldb/vol11/p2078-vo.pdf
http://paperpile.com/b/uvoIl7/Rx62
http://paperpile.com/b/uvoIl7/Rx62
http://paperpile.com/b/uvoIl7/Rx62
http://paperpile.com/b/uvoIl7/Rx62
http://paperpile.com/b/uvoIl7/Rx62
http://paperpile.com/b/uvoIl7/Rx62
http://dx.doi.org/10.1038/s41374-020-0463-y
http://paperpile.com/b/uvoIl7/snnO
http://paperpile.com/b/uvoIl7/snnO
https://cybertraining-dsc.github.io/about/
http://paperpile.com/b/uvoIl7/snnO
http://paperpile.com/b/uvoIl7/snnO
http://paperpile.com/b/uvoIl7/fKw0
http://paperpile.com/b/uvoIl7/fKw0
http://paperpile.com/b/uvoIl7/fKw0
http://paperpile.com/b/uvoIl7/fKw0
http://paperpile.com/b/uvoIl7/fKw0
http://paperpile.com/b/uvoIl7/fKw0
http://arxiv.org/abs/1909.07817
http://paperpile.com/b/uvoIl7/1wd9
http://paperpile.com/b/uvoIl7/1wd9
http://dsc.soic.indiana.edu/publications/RankPrediction%20(1).pdf
http://paperpile.com/b/uvoIl7/MQ1m
http://paperpile.com/b/uvoIl7/MQ1m
http://paperpile.com/b/uvoIl7/MQ1m
http://paperpile.com/b/uvoIl7/MQ1m
http://paperpile.com/b/uvoIl7/MQ1m
http://dsc.soic.indiana.edu/publications/Bigdata_Subgraph2Vec.pdf

